Using super-resolution for enhancing visual perception and segmentation performance in veterinary cytology

Abstrakt

The primary objective of this research was to enhance the quality of semantic segmentation in cytology images by incorporating super-resolution (SR) architectures. An additional contribution was the development of a novel dataset aimed at improving imaging quality in the presence of inaccurate focus. Our experimental results demonstrate that the integration of SR techniques into the segmentation pipeline can lead to a significant improvement of up to 25% in the mean average precision (mAP) metric. These findings suggest that leveraging SR architectures holds great promise for advancing the state-of-the-art in cytology image analysis.

Autorzy

Caputa Jakub
Caputa Jakub
Wielgosz Maciej
Wielgosz Maciej
Daria Łukasik
Daria Łukasik
Russek Paweł
Russek Paweł
Grzeszczyk Jakub
Grzeszczyk Jakub
Karwatowski Michał
Karwatowski Michał
Mazurek Szymon
Mazurek Szymon
Frączek Rafał
Frączek Rafał
Jamro Ernest
Jamro Ernest
Koryciak Sebastian
Koryciak Sebastian
Dąbrowska-Boruch Agnieszka
Dąbrowska-Boruch Agnieszka
Pietroń Marcin
Pietroń Marcin
Wiatr Kazimierz
Wiatr Kazimierz
artykuł
Life (Basel)
Angielski
2024
14
3
321
2024-02-28
70
3,2
0
0