Aerated whey protein gels as a controlled release system of creatine investigated in an artificial stomach

Abstrakt

A controlled creatine-release system has been developed from whey protein-based gels. Their functionalization was carried out by aeration and sodium ions induced “cold gelation” processes. The effect of protein concentration in the aerated whey protein gels at pH 7.0 and 8.0 was analyzed. Physicochemical properties of the aerated gels were evaluated. It was possible to obtain the ions induced whey protein aerated gel with well distributed creatine and different microstructure as well as rheological properties. Different protein concentrations and pH enabled obtaining gels with different rheological properties, texture, air fraction, diameter of air bubbles, microstructure and surface roughness. An increase in the protein concentration enhanced the hardness of the samples, regardless of their pH. The mechanical strength of gels prepared at pH 8 were higher than those obtained at pH 7, as was manifested by the smaller storage modulus of the latter. The former gel exhibited a microstructure between particulate and fine-stranded. A stronger gel matrix produced smaller air bubbles. Aerated gels produced at pH 7.0 had higher roughness than those obtained at pH 8.0. Optimal conditions for inclusion of air bubbles into the gel matrix were: 9% protein concentration at pH 8.0 and this aerated gel was selected for digestion in the artificial stomach. There is a small conversion of creatine to creatinine in the artificial stomach digestion process (9.6% after 6 h). The diffusion of creatine crystals from the aerated gel matrix was the mechanism responsible for the release process. Aerated whey protein gels can be used as matrices for time extended releasing of creatine in the stomach.

Autorzy

K. Terpiłowski
K. Terpiłowski
S. Perez-Huertas
S. Perez-Huertas
K. Nishinari
K. Nishinari
artykuł
Innovative Food Science & Emerging Technologies
Angielski
2022
79
103060
inne
140
6,6
0
1