Sulfur (S) directly influences the proper development, yield, and biological value of Allium sativum. The sulfuric forms of S are easily leached from the soil due to poor sorption. In this context, we looked at to what extent application of S and biomass of catch crops (CCs) left until spring would cause an increase in the yield; we also looked at the macro- and micronutrient content of garlic plants. The experimental factors included applications of 0 and 20 kg ha−1 S to CCs consisting of Trifolium alexandrinum, Raphamus sativus var. oleiformis, Fagopyrum esculentum, Sinapis alba, and control. The bulbs contained more dry matter and macro- and micronutrients (N, P, K, S, Zn, and Fe) than those without S. Garlic plants cultivated with S accumulated more glutathione and total phenolic acids (TPA), and the extracts showed greater antioxidant activity (AA) than those cultivated without S. In 2019 and 2020, the cultivation of winter garlic with S, in combination with clover contributed to an increase in the content of dry matter, S, TPA, AA in bulbs. In the cultivation with fodder radish garlic plants accumulated more nitrogen (N), S, TPA, AA and glutathione in bulbs. In those cultivated with buckwheat, garlic contained more TPA, AA, glutathione, and with mustard more TPA and AA. However, further research is needed to select the species of CC and to determine the S dose to be applied in the effective biofortification of garlic in a sustainable agriculture system.