Microsporidia Nosema are transferred among bees via the faecal-oral route. Nosema spp. spores have been detected on flowers and transferred to hives along with the bee pollen. The aim of the present study was to determine whether Nosema microsporidia are transferred by air in an apiary, in a control area (without the presence of bee colonies), and/or in a laboratory during cage experiments with artificially infected bees. The novel way of transmission by air was investigated by the volumetric method using a Hirst-type aerobiological sampler located on the ground in the apiary, in the Botanical Garden and on the laboratory floor. Concurrently, the mean rate of Nosema infections in the foragers in the apiary was estimated with the Bürker haemocytometer method. Spore-trapping tapes were imaged by means of light microscopy, Nomarski interference contrast microscopy and scanning electron microscopy. The highest concentration of Nosema spores per 1m3 of air (4.65) was recorded in August, while the lowest concentration (2.89) was noted in July. This was confirmed by a Real-Time PCR analysis. The presence of N. apis as well as N. ceranae was detected in each of the tested tapes from the apiary. The average copy number of N. apis was estimated at 14.4 × 104 copies per 1 cm2 of the tape; whereas the number of N. ceranae was 2.24 × 104 copies per tape per 1 cm2. The results indicate that Nosema microsporidia were transferred by the wind in the apiary, but not in the Botanical Garden and laboratory by air. This was confirmed by genetic analyses. DNA from immobilised biological material was isolated and subjected to a PCR to detect the Nosema species. A fragment of the 16S rRNA gene, characteristic of Nosema apis and N. ceranae, was detected. Our research adds knowledge about the transfer of Nosema spp. microsporidia in the natural environment and indicates the season associated with the greatest risk of a bee colony infection with Nosema spp.