Factors affecting coupled degradation and time-dependent sorption processes of tebuconazole in mineral soil profiles

Abstrakt

This laboratory degradation and adsorption study aimed to determine the tebuconazole degradation parameters for 6 profiles of Polish mineral soils and to find links between the tebuconazole degradation rate, its adsorption, soil microbial activity and other significant soil properties. The values of the adsorption distribution coefficient Kd, obtained in batch experiments after 96 h of shaking were in the range of 6.2–34.6 mL g−1. In both batch experiments and incubation experiments at 20 °C, the typical course of adsorption processes was observed, an initial rapid stage followed by a slow stage. In 3 of the 18 soils examined, adsorption was not reached within 51 days. The range of the half-life values was 201–433 days for the Ap horizon and up to 3904 days for subsoils, which were estimated using the two-site nonequilibrium adsorption model coupled with first-order degradation for dissolved and adsorbed pesticide. It was found that modeling the degradation of tebuconazole on the basis of the coefficients of microbial biomass activity for topsoil and two subsoils explained almost 96% of the variance of the estimated pore water degradation rate coefficients in examined soils. The degradation rate was also negatively correlated with the amount adsorbed in the time dependent adsorption sites. This fraction was the least available for soil microorganisms because it was strongly adsorbed in soil pores with a radius <2.5 nm, determined from the H2O desorption isotherm. The degradation rate was also affected by the ratio of the water content in soil during degradation experiments to the water content at field capacity. The results indicated that degradation occurred in the soil liquid phase only.

Autorzy

artykuł
SCIENCE OF THE TOTAL ENVIRONMENT
Angielski
2019
690
1035-1047
200
6,551
0
11