The aim of the article was to analyze changes in the trends of selected physical, chemical and functional properties of lubricating engine oil operating in a diesel-engine vehicle equipped with DPF. The vehicle was operated mainly in urban driving conditions (app. 70%), which impeded the DPF regeneration cycle and caused dilution of oil with unburned fuel. Changes in the following physical and chemical properties were assessed: the DF level in engine oil, viscosity (kinematic, dynamic HTHS and structural CCS), total base number, acid number as well as the degree of oxidation, nitration and sulphonation. The tests have shown that the amount of unburned fuel that goes to the engine crankcase due to the unfinished DPF regeneration cycle is as high as 26.0-34.6%. Dilution of the lubricating oil with fuel leads to a significant reduction of its viscosity - about 30% of the fuel content causes a decrease in the kinematic viscosity measured at 100°C to the level of 7.7 mm2/s. There was also a significant decrease in total base number (TBN) < 2 mg KOH/g, and an increase in the total acid number (TAN). Moreover, the results obtained were analyzed for potential effects that could have been caused during prolonged engine operation by assessing the content of trace elements in the samples taken.